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Human Population Genetic Structure and Inference of Group Membership
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A major goal of biomedical research is to develop the capability to provide highly personalized health care. To do
so, it is necessary to understand the distribution of interindividual genetic variation at loci underlying physical
characteristics, disease susceptibility, and response to treatment. Variation at these loci commonly exhibits geographic
structuring and may contribute to phenotypic differences between groups. Thus, in some situations, it may be
important to consider these groups separately. Membership in these groups is commonly inferred by use of a proxy
such as place-of-origin or ethnic affiliation. These inferences are frequently weakened, however, by use of surrogates,
such as skin color, for these proxies, the distribution of which bears little resemblance to the distribution of neutral
genetic variation. Consequently, it has become increasingly controversial whether proxies are sufficient and accurate
representations of groups inferred from neutral genetic variation. This raises three questions: how many data are
required to identify population structure at a meaningful level of resolution, to what level can population structure
be resolved, and do some proxies represent population structure accurately? We assayed 100 Alu insertion poly-
morphisms in a heterogeneous collection of ∼565 individuals, ∼200 of whom were also typed for 60 microsatellites.
Stripped of identifying information, correct assignment to the continent of origin (Africa, Asia, or Europe) with a
mean accuracy of at least 90% required a minimum of 60 Alu markers or microsatellites and reached 99%–100%
when �100 loci were used. Less accurate assignment (87%) to the appropriate genetic cluster was possible for a
historically admixed sample from southern India. These results set a minimum for the number of markers that
must be tested to make strong inferences about detecting population structure among Old World populations under
ideal experimental conditions. We note that, whereas some proxies correspond crudely, if at all, to population
structure, the heuristic value of others is much higher. This suggests that a more flexible framework is needed for
making inferences about population structure and the utility of proxies.

Introduction

Eighty-five to ninety percent of neutral genetic variation
in the human species is due to differences between in-
dividuals within populations (Lewontin 1972; Barbujani
et al. 1997; Jorde et al. 2000). The remaining 10%–15%
is distributed between groups, and, though modest, this
variation influences the average differences in physical
characteristics, disease susceptibility, and treatment out-
come among populations (Gonzalez et al. 1999; Flan-
agan et al. 2000; Thio et al. 2002). To assess the impact
of this variation, particularly in comparison with envi-
ronmental factors, inferences are often made about the
genetic structure of a sample (e.g., the number of sub-
populations) and about which individuals are assigned
to each subpopulation. This is important because it may
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be better to consider each subpopulation separately in
some situations (e.g., testing whether the effects of nat-
ural selection or genetic drift differ between groups).
Thus, a major goal of population genetics is to under-
stand the nature and extent of human population
structure.

Historically, proxies such as skin color, race, and eth-
nic label have been used to make inferences about pop-
ulation structure, even in the absence of corroborative
genetic data (Cooper 1994; Laveist 1997; Williams
1997; Aspinall 1998). As a result, there is a large body
of literature comparing phenotypes between cohorts de-
fined, for example, as “blacks” and “whites.” In recent
years, the validity of this classification scheme has been
criticized for its weak conceptual underpinnings and its
strong assumptions about underlying biology (Lee et al.
2001; Wilson et al. 2001; Foster and Sharp 2002).
Given the growing availability of large collections of
human genetic data from populations throughout the
world, it was anticipated that the reliability of such
proxies would be resolved via empirical testing (Moun-
tain and Cavalli-Sforza 1997; Rannala and Mountain
1997; Shriver et al. 1997). Instead, recent, well-publi-
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cized studies have led to disparate and sometimes con-
tradictory conclusions (Wilson et al. 2001; Risch et al.
2002). The result has been increased polarization about
the nature of human population structure and a wide-
spread belief that all commonly used proxies correspond
poorly to genetically inferred clusters (Witzig 1996;
Goodman 2000; Schwartz 2001). However, contrasting
interpretations of the same set of data (Wilson et al.
2001) suggest that the signal from these data is too weak
to justify such strong inferences (Risch et al. 2002).

To determine the amount of data needed to identify
population structure and assign membership accurately,
we used a data set of 60 microsatellites and 100 Alu
insertion polymorphisms (hereafter referred to as “Alu
markers”) to infer genetic clusters in a heterogeneous
sample of 1500 individuals from sub-Saharan Africa,
East Asia, southern Asia, and Europe. We found that
substantial genetic structure exists among samples from
different continents, with samples from sub-Saharan Af-
rica falling into two separate African-specific genetic
clusters. Second, the geographic origin of individual
samples, even from an admixed population, can be as-
signed with a moderate level of accuracy. Third, Alu
markers and microsatellites have comparable power to
detect population structure and assign origin, although
accurate cluster assignment requires substantially more
markers than have typically been tested. Fourth, the
proxies associated with the samples used in this analysis
were sometimes, though not always, sufficient repre-
sentations of the inferred genetic clusters, reflecting the
complex and interwoven history of the human species.

Material and Methods

Populations and Samples

For the power analysis, we genotyped 100 Alu poly-
morphisms and 60 tetranucleotide microsatellites in 206
individuals in 20 ethnic groups from sub-Saharan Africa
(58), East Asia (67), and Europe (81). The Alu poly-
morphisms were also genotyped in 55 individuals from
these groups who lacked microsatellite data, including
33 additional Mbuti pygmies from the Ituri forest, 41
sub-Saharan Africans from another three ethnic groups,
and 263 individuals in various caste populations from
the subcontinent of India. Thus, a total of 565 individ-
uals from 23 ethnic groups and southern India were used
in subsequent tests of sample assignment to inferred ge-
netic clusters. (Details on the sample size of each ethnic
group for the Alu data set are provided in fig. 4.)

Alu Insertion Polymorphisms and Microsatellites

All subjects were unrelated. Human-specific Alu poly-
morphisms were identified by comparing the human ge-
nome sequence data to sequences specific to Ya5, Yb8,

Yb9, and Yc1 subfamilies, through use of the basic local
alignment search tool (BLAST). Alu-specific primers
were designed from flanking sequence and were tested
for polymorphism in a panel of 20 African Americans,
20 Europeans, 20 Egyptians, and 20 natives of Green-
land, as well as 1 gorilla, 1 chimpanzee, and 1 bonobo
(Watkins et al. 2001). A subset of 100 autosomal, hu-
man-specific Alu markers were subsequently chosen for
analysis. The specific identities of each Alu marker, the
PCR conditions used to amplify each system, and the
expected amplicon sizes can be found at W.S.W.’s Web
site or under “publications” at M.A.B.’s Web site. Only
samples for which �90% of the data were complete (i.e.,
206 samples) were used for the power calculations. A
complete description of the microsatellites typed in each
population has been published elsewhere (Jorde et al.
1995).

Structure Inference

After removing all information about the ethnic af-
filiation and continent of origin of each individual, we
used a model-based clustering method implemented by
the program Structure (version Jan. 2000; Pritchard Lab
Web site) to estimate the number (K) of clusters into
which the sample data (X) were fitted with posterior
probability , using a model with admixture andPr (XFK)
uncorrelated allele frequencies (Pritchard et al. 2000). A
burn-in of 5,000 iterations was used. The estimate of K
is dependent on the number of individuals that exist
within subpopulations, the number of loci sampled, and
the amount of differentiation between populations.
Thus, K provides only a rough guide for determining
which models may be consistent with the data. For K
between 1 and 6, the posterior probability was equal to
1 for with Mbuti excluded or with theK p 3 K p 4
Mbuti included. Thus, for all power calculations and
estimation of individual sample assignments, a K of 3
was used.

For each individual, Structure estimates the propor-
tion of ancestry from each of the K clusters. A sample
was considered assigned “correctly” if the cluster with
the greatest proportion of ancestry was the same as the
continent of origin of the sample. The probability of
correct assignment with a given number of loci was es-
timated by use of a bootstrap procedure.

Bootstrapped estimates of 95% CIs were performed
in four steps. First, a set of K random loci was chosen
with replacement from the original data set, to form a
simulated data set. Second, the simulated data set was
analyzed using Structure software. Third, the mean co-
ordinates of each population (sub-Saharan Africans,
East Asians, and Europeans) were calculated. Fourth,
the continent of origin of each individual was predicted
as the continent with mean coordinates closest to the
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Figure 1 Predicted origin versus known origin for Africans, East Asians, and Europeans, estimated from 1–100 Alu insertion polymor-
phisms, bounded by 95% CIs.

coordinates of that individual. The predicted continent
of origin of the individual was then recorded. This pro-
cedure was bootstrapped 100 times for randomized data
sets ranging in size from 1 to L loci, where L was the
number of loci in the data set (100 for Alu markers, 60
for microsatellites, and 160 for Alu markers and micro-
satellites combined). In each replicate, the structure anal-
ysis was allowed to run for 100,000 iterations. Trial
analyses showed that extending runs past 10,000 iter-
ations had little effect on the results.

Estimates of FST were calculated using an infinite-al-
leles model as implemented in GDA (Lewis and Zaykin
2001; Lewis Lab Software Web site) for the Alu loci and
using a stepwise mutation model for the microsatellites
(Slatkin 1995).

Results

The Power to Detect Population Structure

To determine the number of loci needed to detect pop-
ulation structure, we plotted the mean proportion of
correct predictions of the continent of origin for n p

–L loci, where L was the number of loci in the data1
set (100 for Alu markers and 60 for microsatellites). The
mean correct prediction of the continent of origin in-
creased rapidly with the number of Alu or microsatellite
loci used in the analysis. For the Alu data, the mean
prediction rates ranged from 40%–50%, for one locus,
to 95%–99%, for 100 loci, depending on the true pop-
ulation of origin (fig. 1). As additional loci were added,
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Figure 2 Predicted origin versus known origin for Africans, East Asians, and Europeans, estimated from 1–60 microsatellite loci, bounded
by 95% CIs.

the rate of correct allocation increased more quickly for
sub-Saharan Africans than for East Asians or Europeans.
When only 20 markers were used, 88% of sub-Saharan
Africans were assigned correctly, whereas correct as-
signment of either East Asians (76%) or Europeans
(71%) was substantially less frequent. Sub-Saharan Af-
ricans were rarely allocated to Asia or Europe, and East
Asians and Europeans were rarely predicted to originate
from Africa. In contrast, East Asians and Europeans
were interchanged 110% of the time, until 160 markers
had been tested. Thus, for a given number of loci, it was
easier, on average, to distinguish Africans from non-Af-
ricans than it was to distinguish between Europeans and
East Asians.

The power of microsatellites, on average, was ap-
proximately the same as the Alu markers for predicting
the continent of origin for sub-Saharan Africans, East
Asians, and Europeans (fig. 2), though it varied slightly,
depending on the predicted origin. For example, 60 mi-
crosatellites were sufficient to correctly predict origin
more often than the Alu loci for samples from East Asia
and Europe. In contrast, 60 Alu loci were sufficient to
correctly predict the origin of 98% of the sub-Saharan
African sample on average, versus 96% for microsatel-
lites. Because the higher mutation rate of microsatellites
should lead to greater differentiation between popula-
tions, this result may seem counterintuitive. However,
the higher mutation rate coupled with constraints on
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Figure 3 Predicted origin vs. known origin for Africans, East
Asians, and Europeans, estimated from 1–160 loci including both 100
Alu and 60 microsatellite loci, bounded by 95% CIs.

allele size lead to more homoplasy among microsatellite
alleles. As a result, the power to detect differentiation
among populations is reduced, because alleles may be
identical by state but not by descent. In contrast, ho-
moplasy and reversions are essentially nonexistent for
Alu polymorphisms, so identity by descent is virtually
assured (Batzer and Deininger 2002).

The boundaries of the 95% CIs around the mean frac-
tion of correct classification within each continent varied
with both numbers of loci and geographic region. For
instance, the CI around the mean correct prediction
achieved with 100 Alu loci was very narrow in the sam-
ple from sub-Saharan Africa, indicating that the data are
highly consistent in distinguishing sub-Saharan Africans
from Europeans and East Asians. In contrast, the CIs
around the mean correct prediction achieved with 100
Alu loci were broader in samples originating in East Asia
and Europe, indicating that outcomes are more variable
even with relatively large numbers of loci.

Combining the Alu and microsatellite data increased
the power to correctly predict the continent of origin for
the East Asian and European samples (fig. 3). For 20
loci, the mean correct prediction for the sub-Saharan
African samples (91%) was highest, followed by those
for the East Asians (82%) and the Europeans (79%).
More than 95% of individuals could be assigned to their
correct continent of origin with only 60 markers, and
160 markers enabled a mean correct prediction of
99%–100% for all samples. The 95% CIs around the
mean fraction of placement within each continent were
narrow for each geographical region, though they re-
mained broader for East Asians and Europeans than for
sub-Saharan Africans. If all the Alu or microsatellite loci
were used without resampling, correct assignment to the
continent of origin was 100%.

Assignment to Inferred Clusters

The assignment of samples from each of 23 different
ethnic populations into genetically inferred clusters for
K values of 2, 3, and 4 is illustrated in figure 4. For

, all of the samples from sub-Saharan Africa wereK p 2
grouped into one cluster, whereas all of the samples from
Europe and East Asia were partitioned into the other.
When a model of was used, the samples fromK p 3
sub-Saharan Africa remained in a separate cluster, but
the samples from Europe and East Asia were divided
into two clusters. Using , population structure inK p 4
the samples from sub-Saharan Africa becomes apparent.
The samples from the Mbuti fall almost exclusively into
a separate cluster, though three individuals from sub-
Saharan African populations (one each from the Nande,
Hema, and !Kung) were also included in this cluster. The
Nande and Hema live on the borders of the Ituri forest,
and both of the individuals assigned to the cluster with

the Mbuti have either a Y chromosome or mitochondrial
haplotype shared with the Mbuti, suggesting recent ad-
mixture (M.J.B., unpublished data). All of the samples
from the Biaka, another population of Pygmies from
sub-Saharan Africa distinct from the Mbuti, were as-
signed to the same cluster as most of the other sub-
Saharan Africans. This is consistent with genetic data
from classical markers suggesting they are admixed with
other sub-Saharan African populations (Wijsman 1986).

These results indicate that the clustering properties of
the Structure software were robust across the different
values of K tested and that population structure and
group membership could be inferred accurately, to var-
ying levels of resolution. This is important because the
resolution at which population structure needs to be
detected can vary, depending on the hypothesis being



Figure 4 Assignment of samples from 23 ethnic groups from Africa, Asia, and Europe, to genetic clusters inferred from the analysis of 100 Alu insertion polymorphisms for , 3, and 4.K p 2
Sample sizes for each population are in parentheses.
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tested (e.g., differences between sub-Saharan Africans
and non-Africans vs. differences among populations
within sub-Saharan Africa). In our case, population
structure among samples from sub-Saharan Africa could
be detected, though it only distinguished between sam-
ples from the Mbuti and non-Mbuti. The identification
of a separate cluster of Mbuti was possible only when
a relatively large sample from this population was in-
cluded in the analysis (data not shown). These obser-
vations are consistent with simulations and empirical
data indicating that population structure is more likely
to be detected when a larger sample size of individuals
is tested (Pritchard et al. 2000; Rosenberg et al. 2001).

Despite the fact that we did not use the geographic
origins of our samples in the analysis, the proportion of
ancestry for each individual when broadly cor-K p 3
responded to the three geographic areas sampled (fig.
5). When either 20 microsatellites or Alu markers were
used, there was considerable variance among the indi-
vidual assignment probabilities, and it was higher for
the Alu markers. However, the mean of the individual
assignment probabilities was significantly higher for the
Alu markers (mean � SD p ) than for the0.866 � 0.20
microsatellites ( ) ( using Wilcoxon0.722 � 0.18 P ! .001
signed rank test). Increasing the number of markers to
60 improved the accuracy of assignment for both sets
of data, with the mean probability of assignment in-
creasing to for 60 Alu markers and to0.933 � 0.13

for 60 microsatellites. Thus, the accuracy0.928 � 0.07
of population assignment was comparable for both types
of markers when a similar number of loci was used,
although individual assignments were slightly more re-
solved with the Alu markers. When all 100 Alu markers
were used, no individuals were misclassified (fig. 5). The
mean and variance of the individual assignment prob-
abilities did not differ substantially between continents.

The clustering algorithm implemented in Structure
may merge subpopulations that share similar allele fre-
quencies. Thus, the inference of population structure and
assignment of samples to the correct population is ex-
pected to require substantially more information (i.e.,
more markers) for groups that have recently differenti-
ated (e.g., Chinese and Japanese) or have experienced
admixture (e.g., Afro-Caribbeans). To assess the power
of the 100 Alu markers to detect structure and to assign
origin correctly in such a situation, we genotyped sam-
ples from southern Indian caste groups and repeated the
Structure analysis. On the basis of analyses of mtDNA,
Y chromosome, and autosomal markers, we have in-
ferred that these caste populations have received genetic
contributions from multiple western Eurasian sources
(Bamshad et al. 2001).

When the southern Indians were compared only to
samples from Europe and East Asia, Structure found that
the optimal number of genetic clusters was one. How-

ever, if we assumed that three clusters were present (i.e.,
), as suggested by proxy information (i.e., placeK p 3

of origin), three groups were distinguished. Correct as-
signment of samples to their place of origin was 97%
for samples from East Asia, 94% for samples from Eu-
rope, and 87% for samples from southern India (fig. 6).
Thus, population assignment of individual samples was
quite accurate even when the optimal number of clusters
was one.

To test whether samples from India could be distin-
guished in an analysis of samples from all three conti-
nents, we added samples from Africa and reanalyzed the
data. This time, the best estimate of K was 3, and the
assignment to the correct population was �98% for
samples from sub-Saharan Africa, East Asia, and Eu-
rope. The samples from southern India were assigned
predominantly to the cluster of East Asians (84%),
though some of them (16%) were assigned to the cluster
containing Europeans.

Discussion

We have demonstrated that, for a collection of hetero-
geneous samples from sub-Saharan Africa, East Asia,
and Europe, the genetic data accurately predicted as-
signment to clusters that corresponded to major conti-
nents. However, correct assignment to the continent of
origin with a mean accuracy of at least 90% required a
minimum of ∼60 Alu markers or microsatellites. This is
a modest number of markers, but it supports the con-
tention that most studies performed to date have lacked
the power to make strong inferences about population
structure and sample assignment, even among highly dif-
ferentiated samples (Wilson et al. 2001; Romualdi et al.
2002). When data from all 160 loci were used, the mean
correct assignment to the continent of origin increased
to 99%–100%.

The average probability of assignment of individual
samples to the correct continent of origin was similar
when the same number of Alu markers or microsatellites
were used, although the performance of either set of
markers varied among samples from different conti-
nents. It may be somewhat surprising that the Alu mark-
ers and microsatellites performed equally well. Because
of their higher heterozygosity, polymorphic microsatel-
lites are typically more informative for profiling indi-
viduals (Evett et al. 1996). However, the properties that
make microsatellites useful for distinguishing among in-
dividuals are not necessarily the same as those that max-
imize the power of a locus to detect population structure
and assign group membership.

To distinguish between two populations, the ideal lo-
cus is one for which an allele is fixed in one group but
is absent in the other group (Reed 1973). In reality, such
loci are rare in comparisons between continental pop-



Figure 5 Proportion of ancestry for individual samples from Africa, Asia, and Europe for , using 20, 60, and 100 Alu insertionK p 3
polymorphisms; 20 and 60 microsatellite loci; and all 160 loci. The proportion of ancestry increases toward each apex.
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Figure 6 Proportion of ancestry for individual samples from Asia, Europe, and India, for , using 100 Alu loci (left), compared withK p 3
the proportion of ancestry for individual samples from Africa, Asia, Europe, and India, for , using 100 Alu loci (right). The proportionK p 3
of ancestry increases toward each apex.

ulations. Instead, one criterion that has been used to
rank the power of loci for detecting population structure
is FST (Bowcock et al. 1991; Rosenberg et al. 2001). For
some Alu markers, the insertion frequency varied little
among continental populations, whereas others were
nearly monomorphic in one continental population or
another. Accordingly, the FST estimates of individual Alu
loci ranged from 0 to 0.72 (see [online only]). Thus,
although a minimum of 60 Alu markers or microsatel-
lites was necessary to assign the predicted continent of
origin for at least 90% of all samples, the individual
markers were not equally informative.

The FST value among the continental populations was
markedly lower for microsatellites (0.042) than for Alu
markers (0.13). The Alu FST value is consistent with FST

estimates obtained in previous studies of diallelic mark-
ers. An analysis of 100 RFLPs yielded an FST value of
0.139 (Bowcock et al. 1991), and a study of 30 diallelic
restriction-site polymorphisms obtained an FST value of
0.141 (Jorde et al. 2000). Similarly, the microsatellite
FST value is somewhat lower than the previous estimates
of 0.10 (Barbujani et al. 1997) and 0.086 (Pérez-Lezaun
et al. 1997); this difference likely reflects the inclusion
of Australian and New World samples in their analyses.
The difference between the average FST values obtained
for the Alu and microsatellite markers is an expected
consequence of the elevated mutation rate of microsa-
tellites, which lowers FST by increasing within-group
variance relative to between-group variance (Jin and
Chakraborty 1995). As expected, the distribution of FST

estimates for individual microsatellites was skewed to
the left compared with distribution for Alu markers (see
fig. A [online only]). Yet, despite these differences, the
statistical power of both types of markers was similar.

This suggests that the power of individual loci is not
only a function of FST.

A variety of other criteria have been employed to rank
the power of markers for estimating individual assign-
ment probabilities. Markers for making admixture es-
timates in individuals have been ranked by estimating
the maximal differences in allele frequencies between
the ancestral populations (Shriver et al. 1997). The ex-
pected heterozygosity or number of alleles at a locus
also appears to correspond to the power of individual
loci to detect population clusters (Rosenberg et al.
2001). The total heterozygosity of each microsatellite
locus used in this analysis (typically 10.70) exceeds the
heterozygosity of each Alu marker (maximum of 0.50),
and, although many of the alleles at each microsatellite
locus were found at a similar frequency in each conti-
nental population, the distribution of other alleles was
more restricted. Thus, although the microsatellites may
have had low FST estimates, they were still powerful for
estimating population structure and assigning group
membership probabilities. This suggests that the power
of each marker is a function of a combination of the
number of alleles, heterozygosity, and FST. Accordingly,
the minimum amount of genetic data required to ac-
curately infer population structure will vary with the
power of each marker as well as the number of markers
used, and therefore careful consideration of the choice
of marker can improve statistical power.

In our analysis, 100 Alu markers did not provide
enough information to distinguish samples from a
southern Indian population as a separate cluster among
sub-Saharan Africans, East Asians, and Europeans. As
a consequence, when , 84% and 16% of the sam-K p 3
ples from India were assigned to genetically inferred
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clusters from East Asia and Europe, respectively. How-
ever, if we assumed that origin on the subcontinent of
India was an accurate proxy and used , the per-K p 4
centage of southern Indians assigned to a separate clus-
ter was 87%. This result suggests that information on
the demographic and evolutionary history of a popu-
lation is needed to determine whether a proxy can be
used to more accurately infer population structure.

In previous studies of human population structure,
samples from several admixed populations defined by
proxy (e.g., Ethiopian, Afro-Caribbean) were assigned
to two or more genetically inferred clusters (Wilson et
al. 2001; Romualdi et al. 2002). This was interpreted
as evidence that proxies inaccurately reflect population
structure. The results of our analysis indicate that the
resolution at which human population structure can be
detected is dependent on the number of loci tested, the
amount of differentiation among populations, the sam-
ple size of each population, and the attempted level of
resolution of population structure. Thus, only weak in-
ferences can be drawn from the failure to detect pop-
ulation structure when a small number of genetic mark-
ers or a small sample size of individuals is used.

Our analysis is based on samples from regions of
Africa, Asia, and Europe that are widely separated from
one another. Accordingly, these samples also maximize
the degree of genetic variation among populations. The
performance (and, hence, the power) of these markers
to differentiate among populations from these conti-
nents would be reduced if samples were included from
regions geographically intermediate between the regions
sampled here (e.g., the Middle East, Central Asia). In-
deed, detection of population structure and assignment
of samples to the correct genetically inferred cluster was
less accurate for samples from geographically inter-
mediate southern India. Importantly, the inclusion of
such samples demonstrates geographic continuity in the
distribution of genetic variation and thus undermines
traditional concepts of race. The results of our power
calculations, however, are important because they set a
minimum for the number of markers that must be tested
to make strong inferences about detecting population
structure when groups are widely dispersed.

Group membership has commonly been assigned by
place of birth (e.g., Africa, Japan), religious belief (e.g.,
Amish, Jewish, Hindu), language (e.g., Amerind, Khoi-
san), or physical traits (e.g., skin color). These proxies
vary in the extent to which they reflect demographic
trends or evolutionary forces that affect the distribution
of neutral genetic variation. As a result, the concordance
of each of these proxies to population structure inferred
from neutral genetic data also varies. For example, an
ethnic label such as “Mbuti” is an accurate guide to
population structure, because it delimits a group that
has differentiated from others as a result of reproductive

isolation and genetic drift. In contrast, a proxy such as
skin color is inaccurate, because it delimits a group (e.g.,
sub-Saharan Africans, New Guinea highlanders, and
Australian aborigines) whose members are similar, vis-
a-vis this trait, as a result of convergent natural selec-
tion. The situation is likely to be similar at many loci
influencing disease susceptibility or drug response, high-
lighting the need to base inferences of population as-
signment on explicit genetic information. However,
there are also notable examples in which disease alleles
closely parallel population boundaries defined by a
proxy (Splawski et al. 2002). A more balanced inter-
pretation of human population genetics data is that a
proxy is sometimes, but not always, an accurate guide
to population structure.

Note added in proof.—Rosenberg and colleagues re-
cently (2002) published an analysis of global patterns
of human population structure using 400 microsatelli-
tes. They found that there is substantial geographic
structure among populations, although the proportion
of an indivudal’s ancestry from one or more populations
was highly variable.
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